$H^1$-Superconvergence of a difference finite element method based on the $P_1-P_1$-conforming element on non-uniform meshes for the 3D Poisson equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes

For the linear finite element method based on general unstructured anisotropic meshes in two dimensions, we establish the superconvergence in energy norm of the finite element solution to the interpolation of the exact solution for elliptic problems. We also prove the superconvergence of the postprocessing process based on the global L2-projection of the gradient of the finite element solution....

متن کامل

A Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results

This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...

متن کامل

A Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results

This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...

متن کامل

Non-conforming Mixed Finite Element Methods for Diffusion Equation

In this dissertation, we consider new approaches to the construction of meshes, discretization, and preconditioning of the resulting algebraic systems for the diffusion equation with discontinuous coefficients. In the first part, we discuss mixed finite element approximations of the diffusion equation on general polyhedral meshes. We introduce a non-conforming approximation method for the flux ...

متن کامل

A Non-Conforming Finite Element Method for Convex Optimization Problems

The goal of this paper is the analysis of a non-conforming finite element method for convex variational problems in the presence of the Lavrentiev phenomenon for which conforming finite element methods are known to fail. By contrast, it is shown that the Crouzeix–Raviart finite element discretization always converges to the correct minimizer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2017

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3266